Label Your Own Data

This guide explains how to create your own training dataset by labeling images so they can be used to train AI/ML models.  

The guide provides step-by-step instructions on how to: 

Before downloading the dataset, you need to label the images so that they can be used for training purposes. 

  • Sign in to the Training Dataset Labeling Tool using your credentials. 
  • Click on the Images button to access the available datasets. 
  • Select the image dataset that you want to label. 
  • Click on the Crop Image button next to the selected dataset.
  • Adjust the X, Y, and Zoom sliders to define the cropped area of your region of intrest. 
  • Click Crop Image to finalize the cropped selection. 
  • Click on Segmentation Tool for creating segmentation. 
  • Once you open it, you will see an image of the sun with different color – coded areas. 
  • Choose the cropped dataset which you want to label  
  • Quickshift Segmentation 
  • SLIC Segmentation 
  • Watershed Segmentation 
  • Felzenswalb Segmentation 
  • Apply Pre-Processing & Segmentation  
  • Enable Multi Processing for faster processing. 
  • Gauss Sigma for smoothing 
  • Kernel Size for region size 
  • Max Distance for merging threshold 
  • Apply Post Processing & Boundary Marking  
  • Enable Region Merging and set Merging Threshold. 
  • Click on Mark boundaries to highlight segmented areas. 
  • Preview the segmented image. 
  • Click Save Segmentation to store the labeled data. 
  • Click on Start Labeling to begin the labeling process.  
  • Select the segmented image where you want to apply labels.
  • Coronal Hole highlighted in red. 
  • Active Region highlighted in light blue. 
  • Filament Channel highlighted in pink. 
  • Bright Points highlighted in Purple. 
  • Unlabeled areas highlighted in black.  

Select the appropriate label type before applying it to the image. 

  • The total number of segments in the image. 
  • How many segments are labeled. 
  • How many segments are still unlabeled. 
  • If you want to make changes, you can click on a labeled area and update it

If you don’t want to label images manually, you can use the automatic labeling option. 

  • Click on Auto Label. 
  • Adjust the Probability Threshold. 
  • Choose a model (for example, Random Forest) for automatic labeling. 
  • Click Confirm to start the process.  
  • Review the automatically labeled image to ensure the labels are correct.

Once labeling is done, the images are saved so that they can be used for training. 

  • Find the Save button. 
  • Click it to save all the labeled images. 
  • Enter a file name with extension .h5 for the labeling (e.g., test_1.h5) to save the labeled dataset. 
  • Click “Save” to create a new labeled file and store the segmentation results. 
  • The labeled images will now be stored in the system. 
  • Go to the Labeled Image View section.
  • You will see small preview images of the labeled data. 
  • A pie chart will show:  
  • How much of the image has been labeled as coronal holes. 
  •  How much is still unknown or unlabeled. 

If you notice any errors, you can go back and adjust the labels. 

  • If labels are incorrect Re-label the Data 
  • Go back to the Segmentation Tool. 
  • Select the image that needs to be re-labeled. 
  • Click on the Start Label button.
  • Choose the Segmented Images that require re-labeling.
  • Apply the correct labels to the respective segments 
  • Click save button for saving the labels in the existing file.